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Abstract The main purpose of this work is to develop a new multi-way decom-
position technique by considering statistical structure of target multi-way array. To
this end enhanced multivariance products representation (EMPR), which is an expan-
sion extended from high dimensional model representation (HDMR), is used. EMPR
provides quite successful results on representation and approximation of multivariate
functions when they have high level multiplicativity. Hence this urges us to reconstruct
EMPR as a multi-way array decomposer. This paper presents this decomposition tech-
nique with all reconstruction formulations and numerical experiments on synthetic and
real-life data sets to denote EMPR’s efficiency as a decomposer and also presents a
combined method Reductive-EMPR (R-EMPR) as a multi-way array decomposition
technique.

Keywords High dimensional data · Multi-way array decomposition · Enhanced
multivariance product representation · Reductive array decomposition

1 Introduction

High dimensional data modelling became an indispensable subject in applied science
with the development of technology used in the collection of data. Thus, there are a lot
of algorithms and models which have been developed to tackle with high dimensional
data sets. Sometimes high dimensional data sets are processed as multi-way arrays
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to capture relationships between the features more accurately. A multi-way array is
a type of high-dimensional data with multi-indices. Multi-way arrays (N-way arrays,
tensors) are the generalization of vectors (1-way arrays) and matrices (2-way arrays) in
a simple definition. Here we prefer to say ‘multi-way array’instead of ‘tensor’ to avoid
confusion with the entities used in the areas like continuum mechanics. Those tensors
are required to satisfy certain transformational properties which do not need to exist
in multi-way arrays. To give a clear explanation it can be stated that a multi-way array
is somehow product of vector spaces of each way [1]. Multi-way array applications
can be found in all areas which include multi-way data. Chemometrics, neuroscience,
psychometry, data mining are some of these areas [2]. Even though multi-way arrays
are not subject of linear algebra, there are certain similarities between the matrix-
vector operations and multi-way arrays, for instance, the norm of a multi-way array
can be evaluated just like Frobenius norm in ordinary linear algebra [3]. Let X be an
N -way array which has dimensions I1 × I2 × · · · × IN , then its norm can be defined
as follows

‖ X ‖=

√
√
√
√
√

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

x2
i1i2...iN

, X ∈ RI1×I2×···×IN (1)

Inner product definition has same analogy with the well-known inner product of ordi-
nary linear algebra. The inner product of two different multi-way arrays which have
same number of ways and same number of dimensions on related ways can be evalu-
ated just like the one below

〈X ,Y〉 =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

xi1i2...iN yi1i2...iN , X ,Y ∈ RI1×I2×···×IN (2)

Although there are different kind of multiplications and features, such as, Kronecker
product, Hadamard product, Khatri-Rao product, n-mode product and rank, they are
not explained here since our method does not require these entities explicitly and they
can be found in reference [4] by curious readers. Also there are different kinds of
decomposition techniques for multi-way arrays to work with less data or to under-
stand the relations between the ways. Since multi-way array is a data type with high
dimensionality, dimensionality reduction is naturally the most important application
on this subject just like matrix decomposition techniques. However, due to the special
form of multi-way array’s dimensionality, matrix decomposition techniques may be
insufficient for dimensionality reduction. Therefore matrix decomposition techniques
were extended and approach is specialized for multi-way arrays. However this study
aims to develop a new technique by using enhanced multivariance products represen-
tation (EMPR) which is a recently developed algorithm used for multivariate function
de composition exactly and mostly approximately. Next section contains preliminaries
of mathematical background and literature for the method we propose.
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2 Mathematical background

2.1 Decomposition techniques

Decomposition is a basic process for high dimensional data analysis, hence it, almost
always, remains a popular topic for researchers. In many applications researchers had
formerly used matrix decomposition methods for all kinds of data set regardless of
the way concept. This approach may cause information loss for multi-way data even
though it may cause wrong inference for noisy multi-way data [5]. Therefore the
latter decomposition techniques are extended for multi-way arrays with inspiration
from matrix decomposition techniques such as singular value decomposition (SVD),
principal component analysis (PCA), factor analysis (FA) [6–8]. Multi-way array
decomposition has place in many application areas, from computational chemistry
to neuroscience, however root s of multi-way array decomposition can be found at
Hitchcock’s studies [9]. Different two basic decomposition techniques were developed
afterwards by Cattel [10,11] and Tucker [12,13]. These methods motivate researchers
for developing new decomposition techniques and for using multi-way ar rays more
frequently in many applications. Nowadays there are many decomposition techniques
which arise from these two basics and alternative methods are used in applications [14,
15]. These techniques usually handle multi-way data with respect to spectral pattern of
data set. For example Tucker decomposition for a target multi-way array gives factor
matrices as the number of ways and a core multi-way array, but still it is possible to
gain a new algorithm by considering some constraints and condition s. As an example
let X be a 3-way array and its dimensions be I × J × K , A ∈ R

I×P , B ∈ R
J×Q

and C ∈ R
K×R are factor matrices and G ∈ R

P×Q×R is core array. Then Tucker
decomposition for X can be written as follows

X ≈ G ×1 A ×2 B ×3 C =
P

∑

i=1

Q
∑

j=1

R
∑

k=1

gi jkai b j ck, (3)

where ×i , i = 1, 2, 3 show mode product of a multi-way array with a matrix according
to related way. It is possible to find components of Tucker decomposition with different
condition s on factor matrices such as orthogonality [16], best rank approximation [17]
or Bayesian perspective [18]. Another commonly used method, canonical polyadic
decomposition (CP), de compose a multi-way array as finite sum of rank-one tensors
[19–21] and it can be considered as the generalization of SVD. As an example CP
decomposition for a 3-way array is as follows

X ≈
R

∑

r=1

ar ◦ br ◦ cr (4)

where r stands for the rank of a multi-way array and ◦ shows outer product of vec-
tors, ar , br , cr . CP method decomposes a multi-way array with respect to rank of
array which is shown as R above. Although there are different rank definitions for
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multi-way arrays, here, it is defined as the number of terms that formed as outer
product of each way’s vector. All the methods described so far are obtained through
procedures based on the features of multi-linear algebra, but it is possible to find a dif-
ferent way for decomposition. So we propose a new approach to decompose multi-way
data considering statistical relationships between ways of the data by using EMPR.
The following section explains general features and analytical structure of EMPR.

2.2 Enhanced multivariance products representation

High Dimensional Model Representation (HDMR) based algorithms are used recently
at different scientific areas which have high dimensional data. Actually HDMR was
designed to approximate a multivariate function and was based on divide-and conquer
philosophy by Sobol [22], then it was extended by Rabitz [24] and Demiralp[23].
Mathematical expression of HDMR is as follows

f (x1, . . . , xN ) = f0 +
N

∑

i=1

fi (xi ) +
N

∑

i1,i2=1
i1<i2

fi1,i2

(

xi1 , xi2

) · · · + f12···N (x1, . . . , xN )

(5)

where f is an analytical function with N independent variables, f0 is constant com-
ponent of HDMR, fi (xi )’s are univariate components for i = 1, . . . , N and the other
components have increasing number of variable dependencies. To uniquely determine
components at the right hand side of the Eq. (5) certain conditions should be imposed.
These constraints are defined also for EMPR under the existence of support func-
tions which are univariate functions multiplied by components of HDMR and they are
explained for EMPR of multi-way arrays in the next section. Enhanced multivariance
products representation was developed by Demiralp to get better approximation and
to overcome some weaknesses of HDMR [25,26]. Although different methods based
on HDMR have been developed for different kind of functions [27–29], EMPR can be
considered as a generalization of HDMR. The main reason for developing EMPR is
additive nature of HDMR. We know that HDMR works well in approximating additive
natures. The structure of EMPR having similar philosophy with HDMR increases the
performance of that method and makes this divide-and-conquer algorithm applicable
to all kinds of analytical structures. Another main property of HDMR that distin-
guishes HDMR from the other expansions (Taylor, Maclaurin, etc…) is to be finite,
in other words, HDMR decomposes a multivariate function starting from a constant
component end ing with an N -dimensional component but EMPR has the same mul-
tivariance at each term with the help of support functions (s j (x j ), j = 1, . . . , N ) as
shown in the following equation for an N -variate function, f .

f (x1, . . . , xN ) = f0

N
∏

j=1

s j
(

x j
) +

N
∑

i=1

fi (xi )

N
∏

j=1
j �=i

s j
(

x j
)
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+
N

∑

i1,i2=1
i1<i2

fi1,i2

(

xi1 , xi2

)
N

∏

j=1
j �=i1,i2

s j
(

x j
) + · · · (6)

+ f12···N (x1, x2, · · · , xN ) .

The existence of support functions empowers the quality of approximation to mul-
tivariate functions. Here support functions are univariate functions and derived from
f (x1, . . . , xN ) itself, but they can be adapted to different kind of structures or they
can be chosen manually so to speak if there is some knowledge about the structure of
target multivariate function. These powerful and flexible aspects of EMPR urge us to
apply this method to discrete structures like multi-way arrays. Next section describes
EMPR’s general structure for multi-way arrays and also introduces a new method for
choosing support terms of EMPR.

3 Enhanced multivariate products representation as a multi- way array
decomposer

3.1 Discrete enhanced multivariate products representation

Enhanced multivariance products representation, which is an ex tended version of high
dimensional model representation (HDMR), has been used for discrete structures in
recent years [30,31]. Based on this development, EMPR is applied to multi-way arrays
and the preliminary results are quite remarkable, so that it is imperative to explain
EMPR algorithm and the progress on multi-way arrays. Mathematical structure of
EMPR on multi-way arrays is similar to application on continuous functions. However
it is needed to bring it into line with mathematical formula of EMPR on continuous
functions, so EMPR expansion on multi-way array is explicitly shown be low

Xi1...iN =
N

∏

j=1

s( j)
i j

X (0) +
N

∑

j1=1

X ( j1)
i j1

N
∏

j=1
j �= j1

s( j)
i j

+
N

∑

j1, j2=1
j1< j2

X ( j1 j2)
i j1 ,i j2

N
∏

j=1
j �= j1, j2

s( j)
i j

+ · · · + X ( j1 j2... jN )
i j1 i j2 ...i jN

, i j = 1, 2, . . . , n j , j = 1, 2, . . . , N (7)

where X is a multi-way array of N way (or indexes) and Xi1...iN is the element with
i1 . . . iN indices, X0 shows constant term of EMPR, X ( j1), j1 = 1, . . . N ’s are one-way
arrays, and the other terms on the right hand side are the arrays which have increasing
ways. s( j)’s are the support terms of EMPR expansion and they ensure the number
of way’s equality for each term. Thus, when applying truncation to EMPR expansion
it is possible to get knowledge about all ways of multi-way array. At this point, two
important terms of EMPR must be calculated, and to do that, some conditions and
constraints are defined. In fact these conditions show similarity with the EMPR on
continuous functions. First of them is weight array which is composed of outer products
of each way’s one-way weight arrays. Outer product of vectors refers to tensor product
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that increase the dimensionality of the result. Besides, normalization condition is still
valid for multi-way arrays.

n j
∑

i j =1

W ( j)
i j

= 1, Wi1...iN ≡
N

∏

j=1

W ( j)
i j

, j = 1, 2, . . . , N (8)

where W ( j)
i j

’s are positive. In addition to the above conditions, EMPR’s each support
term must have unit weighted norm. This property provides determination of EMPR
components uniquely.

n j
∑

i j =1

W ( j)
i j

(

s( j)
i j

)2 = 1, j = 1, 2, . . . , N (9)

To determine the EMPR components uniquely certain other conditions are needed. To
this end, we introduce the vanishing conditions as follows

n jl∑

i jl =1

W ( jl )
i jl

s( jl )
i jl

X (i j1 ...i jk )

i j1 ...i jk
= 0

l = 1, 2, . . . , k, k = 1, 2, . . . , N (10)

As a matter of fact, EMPR’s constant term can be considered as projection which
projects all the multi-way array to the weighted and supported mean of this array
under certain weight arrays and support terms. Constant term of EMPR for a multi-
way array can be determined as follows.

X (0) =
n1∑

j1=1

· · ·
nN∑

jN =1

W (1)
j1

· · · W (N )
jN

N
∏

k=1

s(k)
jk

X j1... jN (11)

One-way components of EMPR for a multi-way array also get the information from
all ways except the focused one. Each one-way component excludes the way relevant
to itself and takes the mean of the multi-way array under related weight arrays and
support arrays over the other ways.

X (k)
ik

=
n1
∑

j1=1

· · ·
nN∑

jN =1

W (1)
j1

· · · W (N )
jN

δik jk

W (k)
jk

N
∏

l=1
l �=k

s(l)
il

X j1... jN − X (0)
j1... jN

ik = 1, 2, . . . , nk, k = 1, 2, . . . , N , l = 1, 2, . . . , nl (12)

EMPR components with two or more ways can be found within the same philosophy.
However in this study it is desired to get best approximant for target multi-way array by
calculating EMPR terms which have at most two-way components, so determination
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of higher-order terms is not explicitly given here. The main problem of building an
EMPR algorithm for multi-way arrays is determination of the support terms. The
outer product of all support terms should reflect the pat tern of target array as much
as possible. As a matter of fact the functional structure of the elements of the given
multi-way array in the indices is not known so the best and easiest way is to use the
multi-way array itself. For this purpose, under a certain weight array, EMPR’s support
term of a way is formulated as follows.

s
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i j

=

n1∑
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· · ·

n j−1
∑
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∑
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W
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⎜
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⎣
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∑
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∑
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· · · W
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⎦

2
⎞

⎟
⎠

1
2

(13)

This kind of expression is easy to calculate but it reminds us whether a better way
exists. To answer this question optimization works on support terms are in progress to
get a powerful decomposition technique. A brand new idea that this research brings is
using reductive decomposition method for multilinear arrays (RDMMA) to determine
support terms which is described in the next subsection.

3.2 Reductive enhanced multivariance product representation

RDMMA reduces the dimensionality of an array one by one and it has been recently
applied to animation data sets [32,33]. According to RDMMA an approximated array
is constructed with product of two multi-way arrays as follows. Let M be an approxi-
mate array for original N way array, X , then M consists of two arrays’ outer product
(◦), one way array x and (N − 1) way array B.

M ≡ B ◦ x, B ∈ HN−1, x ∈ H1 (14)

where the relevant Hilbert spaces are denoted by the symbol H. The element repre-
sentation of this product can be shown as

Mi1,...,iN = Bi1,...,iN−1 xiN . (15)

It is possible to find B and x by constructing an optimization problem under certain
conditions such as taking the norms of the arrays as one, ‖M‖ = 1, ‖B‖ = 1,

‖x‖ = 1. Under these conditions we can use the following cost functional to proceed

J = �(σ, B, x) + λ1(‖B‖2 − 1) + λ2(‖x‖2 − 1) (16)

where

�(σ, B, x) = ‖D‖2

D ≡ X − σ B ◦ x (17)
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and λ1, λ2 are Lagrange Multipliers to be determined. This expresses the distance
square between the target function and the approximant plus Lagrangian constraints
terms. This optimization problem can be solved in two steps. As the first step, the
first derivatives of the above cost functional with respect to σ , λ1, λ2 are calculated,
then the gradients with respect to B and x are calculated in the second step. After
algebraic calculations and substitutions a covariance-like matrix, C is defined through
X as follows

Ci j ≡
n1∑

i1=1

· · ·
nN−1∑

iN−1=1

Xi1,...,iXi1,..., j , i, j = 1, 2, . . . , nN (18)

The above matrix is in fact a coefficient matrix for an eigenvalue problem which gives
the desired one-way array, x

Cx = σ 2x (19)

All the calculations bring the other member which is an (N − 1)-way array to us and
its elements can be evaluated as below.

Bi1,...,iN−1 = 1

σ

nN∑

iN =1

Xi1,...,iN xiN , (20)

The proofs of the above method can be found in related reference [34]. A brand new
idea of this work is to combine EMPR with the method explained above for multi-way
array decomposition. The combination of these two methods yields a decomposition
technique which can detect statistical structure of the data and also gets spectral per-
spective for the same data. Combination process begins with getting multi-way array,
for example let X be a 3-way array and B(3), x (3) be component s of RDMMA for
the way chosen as the first way of the array. If approximated array is named as Xapp

to refer an approximation then it can be shown as follows.

Xapp = σ1 B(1) ◦ x (1) (21)

If the difference between original array and Xapp and the orthogonality between Xapp

and difference array is taken into consideration as a new constraint then RDMAA is
applied to the difference array again but this time for the second way, and then the
expression below becomes appropriate for the new approximation.

Xapp = σ1 B(1) ◦ x (1) + σ2 B(2) ◦ x (2) (22)

Difference between the second approximation and the original array is again processed
with RDMMA and a decomposition which has two-way and one-way components for
all ways is obtained.

X ≈ σ1 B(1) ◦ x (1) + σ2 B(2) ◦ x (2) + σ3 B(3) ◦ x (3) (23)
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Here σ1, σ2, σ3 stand for scaling parameters of relevant components which have unit
array norms. Obtained one-way arrays from Eq. (23), (x (1), x (2), x (3)), can now be
used as support terms of EMPR.

Many data types obtained from nature is referred to as 3-way so our com-
bined method, reductive enhanced multivariance product representation (R-EMPR),
is explained for three-way arrays for the ease of explanation, even so it can be applied
for arrays that have more than three ways. Other important issues to be mentioned
about R-EMPR are selecting directions and deciding turn of reduction. On the exam-
ple above reduction starts from a determined way by user and goes on in the same
way, directions can be selected not only arbitrarily. They can be selected on how the
obtained approximation quality is. At this stage of this study it is also important to
see the behaviour of EMPR and R-EMPR on real life multi-way data sets. To this end
next section examines some 3-way arrays from synthetic data sets and data sets from
experiments.

4 Numerical implementations

With these numerical experiments in this section it is aimed to see behaviours of EMPR
on different multi-way data sets and to compare performance of our method against two
main and commonly used algorithms, Tucker decomposition and CP decomposition.
First of all some synthetic 3-way data sets with additive and multiplicative structures
are produced by changing additivity and the dimensions of multi-way arrays. Using
synthetic data set with additive nature is import ant to see whether EMPR represent the
data set when non-additive behaviour increases. The algorithm coded on MATLAB and
EMPR’s zeroth, fir st and second order approximants’ performance were measured by
relative error. Table 1 shows the relative errors of EMPR approximants which produced
from additive data sets and Table 2 shows results for more multiplicative 3-way data
sets.

According to the results, when the additivity decreases in data set then the approx-
imation quality decreases too. There is also same kind of relation between the dimen-
sions of ways and the relative error, but this time increasing dimension make less
efficient approximation.

In this study we also aim to see how our algorithm represents data against the
other two multi-way array decomposition algorithms. For this purpose real-life data
sets are taken from different chemical experiments and Tables 3, 4, and 5 show the
results. Tucker and CP decomposition is applied by using Matlab Tensor Toolbox

Table 1 Approximation results of discrete EMPR for additive synthetic data sets

Datasets Relative Err0 Relative Err1 Relative Err2

X (3,4,5), X (i, j, k) = i + j + k 0.0372 0.0357 0.0057

X (6,8,10), X (i, j, k) = i + j + k 0.0479 0.0454 0.0084

X (12,16,20), X (i, j, k) = i + j + k 0.0541 0.0508 0.0100
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Table 2 Approximation results of discrete EMPR for multiplicative synthetic data sets

Datasets Relative Err0 Relative Err1 Relative Err2

X (3,4,5), X (i, j, k) = i2 + j2 + k2 0.1011 0.0898 0.0213

X (6,8,10), X (i, j, k) = i2 + j2 + k2 0.1183 0.1029 0.0265

X (12,16,20), X (i, j, k) = i2 + j2 + k2 0.1266 0.1091 0.0290

Table 3 Relative errors for amino dataset

Tucker Alg. CP Alg. EMPR0 EMPR1 EMPR2 R-EMPR2

0.5996 0.6465 0.6179 0.5988 0.2147 0.0955

Table 4 Relative errors for nose dataset

Tucker Alg. CP Alg. EMPR0 EMPR1 EMPR2 R-EMPR2

0.0323 0.1398 0.0411 0.0328 0.0032 0.0059

Table 5 Relative errors for sugar-process dataset

Tucker A. CP A. EMPR0 EMPR1 EMPR2 R-EMPR2

0.6345 0.7061 0.6413 0.6352 0.1790 0.1381

[35]. After getting two decompositions with their best rank for each data set then
decomposed array reconstruct ed and the difference between the original multi-way
array and the reconstructed array is evaluated. The first of real-data samples is ami no
acid data set which was used by Bro [36]. Amino acid data set includes five samples
and each sample contains different amount s of tyrosine, tryptophan and phenylalanine
dissolved in phosphate buffered water. These samples were measured by fluorescence
with excitation 250–300 nm, emission 250–450 nm, 1 nm intervals and the dimensions
of data set 5 × 51 × 201.

Second chosen data set is taken from sensor based investigation, Nose data set.
Data set is composed of three way as sample, time and sensor. The main purpose of
the collecting this data set is to differentiate good licorices and bad licorices with the
help of an electronic nose combined with multivariate chemometrics tools [37]. Also
the data set ordered as sample× time × sensor and dimensions are 18×241×12.

Third data set was obtained from sugar dissolved in un-buffered water and measured
on spectrofluorometer [38]. Dimensions of the data are 265 × 571 × 7. The first way
shows samples, the second way shows emission wavelengths and the last way is for
excitation wavelengths. All of the datasets can be obtained from relevant reference
[39].

According to numerical results second order approximation with EMPR provides
very powerful approximation for different kind of data sets. Even the first order approx-
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imation of EMPR gives results as good as Tucker Decomposition and CP Decompo-
sition. Another observation onto numerical experiments R-EMPR may optimize the
results of plain EMPR. Here given R-EMPR results show second order approxima-
tions. Because we want to see whether R-EMPR is better than the best EMPR approx-
imation. The approximation degree has been taken as second order for R-EMPR.

5 Concluding remarks

This study shows the performance on multi-way arrays of two novel decomposition
algorithm, EMPR and R-EMPR. They can represent multi -way data sets as good as
other methods which are frequently used in the literature for decomposing multi-way
arrays. Numerical results show us R-EMPR has the power to optimize the EMPR’s
results. In this work we have used both synthetic data sets and data sets from some
chemical experiments to show the approximation quality and compare with two other
methods. Second order approximants of EMPR and R-EMPR provide more powerful
approximations than zeroth degree and first degree approximations. This means that
the second order approximation represents the data set quite good and there fore second
order approximations of these methods can be alternative decomposition techniques
for at least three-way arrays or arrays have more than three ways.

Another subject to be emphasized is the selection of the ways when R-EMPR is
applied iteratively. They can be chosen arbitrarily just as we mentioned above but it
would give more powerful results, if the decision of R-EMPR’s way can be made
according to a criterion for that the success of the approximation. Another finding of
this work is the selection of support terms can be modified by using RDMMA’s one-
way components. And this finding provides diversity for both algorithm’s structure
and performance value. Although the preliminary results have been given by using
truncation, reconstruction and approximation, it is obvious that EMPR and R-EMPR
will find their place in certain applications on multi-way arrays.
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24. H. Rabitz, Ö. Alış, General foundations of high dimensional model representations. J. Math. Chem.

25, 19–233 (1999)
25. B. Tunga, M. Demiralp, The influence of the support functions on the quality of enhanced multivariance

product representation. J. Math. Chem. 48(3), 827–840 (2010)
26. B. Tunga, M. Demiralp, Support function influences on the univariance of the enhanced multivariance

product representation, in AIP Conference Proceedings, vol. 1504 (2012)
27. M.A. Tunga, M. Demiralp, A factorized high dimensional model representation on the partitioned

random discrete data. Appl. Numer. Anal. Comput. Math. 1, 231–241 (2004)
28. M.A. Tunga, M. Demiralp, A factorized high dimensional model representation on the nodes of a finite

hyperprismatic regular grid. Appl. Math. Comput. 164, 865–883 (2005)
29. M. Demiralp, Logarithmic high dimensional model representation, in Proceedings of 6th WSEAS

International Conference on Mathematics (MATH’06) (2006), pp. 157–161
30. M. Demiralp, E. Demiralp, Reductive multilinear array decomposition based support functions in

enhanced multivariance product representation (EMPR), in Proceedings of the International Confer-
ence on Applied Computer Science (WSEAS) (2010), pp. 448–454

31. E.K. Özay, A new multiway array decomposition via enhanced multivariance product representation,
in AIP Conference Proceedings, vol. 1479 (2012), pp. 2015–2018

32. E. Demiralp, Application of reductive decomposition method for multilinear arrays (RDMMA) to
animations, in Proceedings of the 11th WSEAS International Conference on Mathematical Methods
and Computational Techniques in Electrical Engineering, vol. 1, no. 2 (2009), pp. 648–656

33. L. Divanyan, M. Demiralp, Weighted reductive multilinear array decomposition, in AIP Conference
proceedings, vol. 1389 (2011)

123

http://arxiv.org/abs/1108.6296


2558 J Math Chem (2014) 52:2546–2558

34. M. Demiralp, E. Demiralp, An orthonormal decomposition method for multidimensional matrices,
numerical analysis and applied mathematics, in International Conference on Numerical Analysis and
Applied Mathematics, vol. 1168, no. 1 (AIP Publishing, 2009), pp. 424–427

35. B.W. Bader, T.G. Kolda, MATLAB Tensor Toolbox Version 2.2. http://www.sandia.gov/~tgkolda/
TensorToolbox/ (2007)

36. R. Bro, PARAFAC: tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997)
37. T. Skov, R. Bro, A new approach for modelling sensor based data. Sens. Actuators B Chem. 106(2),

719–729 (2005)
38. R. Bro, Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis.

Chemom. Intell. Lab. Syst. 46, 133–147 (1999)
39. http://www.models.kvl.dk/datasets

123

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.models.kvl.dk/datasets

	Reductive enhanced multivariance product representation for multi-way arrays
	Abstract
	1 Introduction
	2 Mathematical background
	2.1 Decomposition techniques
	2.2 Enhanced multivariance products representation

	3 Enhanced multivariate products representation as a multi- way array decomposer
	3.1 Discrete enhanced multivariate products representation
	3.2 Reductive enhanced multivariance product representation

	4 Numerical implementations
	5 Concluding remarks
	Acknowledgments
	References


